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1. Introduction

Low energy world-volume theory of multiple M2-branes recently attracted much attention

after the proposal of the Bagger-Lambert-Gustavsson (BLG) model [1, 2]. In the BLG

model, the theory consists of matter fields with Chern-Simons term of a novel 3-algebra

gauge field. This model exhibits an explicit N = 8 supersymmetry with manifest SO(8) R-

symmetry. Quantization condition of the 3-algebra structure constant was pointed out in [1]

which defines the level of the Chern-Simons term. The explicit Lagrangian was constructed

by focusing on a 3-algebra with structure constant fabcd = ǫabcd known as A4 algebra. This

theory was expected to describe two coincident M2-branes located on the “M-fold” [3] and

various properties of this model have been explored [4]. One would expect that higher rank

3-algebras describe more number of M2-branes. However, under the assumption of positive

definiteness of the metric, there is only one non-trivial example of the 3-algebra, just only

A4 and its direct product are allowed [6, 5]. In order to circumvent this no-go theorem, 3-

algebras including Lorentzian metric [7 – 9], non-antisymmetric structure constant [10, 11]
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were discussed. It was addressed that the A4 algebra can be interpreted as SO(4) gauge

symmetry. This fact provides a valuable intuition for the ordinary gauge group description

of the model. Indeed, in [12], the SO(4) BLG model were re-formulated as an SU(2)×SU(2)

superconformal Chern-Simons-matter theory.

Meanwhile, Aharony-Bergman-Jafferis-Maldacena recently proposed three dimensional

N = 6 superconformal Chern-Simons-matter theory as an alternative model of N coinci-

dent M2-branes in C4/Zk orbifold (ABJM model) [13]. The gauge group is U(N) ×U(N)

and four complex scalar fields are introduced as the (anti) bi-fundamental representation

of this gauge group. Two gauge fields Aµ and Âµ corresponding to each U(N)s have

levels k and −k respectively and the Lagrangian of the ABJM model exhibits an SU(4)

R-symmetry. For SU(2) × SU(2) gauge group, the N = 6 supersymmetry is enhanced to

N = 8 and the ABJM model precisely recovers the BLG model. It is also argued in [13]

that the model is dual to M-theory on AdS4 × S7/Zk at large-N . A lot of works on this

model have been studied [14].

On the other hand, as in the case of the world-volume description of D-brane configu-

rations in perturbative string theory, the classical solutions in the M2-brane world-volume

theory captures various properties of branes existing in M-theory. Remarkably, BPS solu-

tions of the ABJM model have been analyzed by several authors [15, 16]. In these papers,

a fuzzy funnel solution which preserves at least N = 3 supersymmetry was found. Similar

to the Basu-Harvey analysis [17], the cross-section of this fuzzy funnel is fuzzy S3 rep-

resenting N M2-branes attached to an M5-brane. These BPS solutions represent static

configurations of the branes and are unable to capture the dynamics of brane systems. In

addition to these static solutions, it is interesting to study time-dependent and non-BPS

configurations of branes in M-theory.

Motivated by these facts, in this paper, we demonstrate that there are classical solu-

tions in the ABJM model that represent time evolution of M2-branes or M2/M5-branes

combined system. In order to study the time dependence of the M2-brane configuration, we

examine its second differential equation of motion. In general, it is difficult to solve these

non-linear second derivative differential equations, however, for some special situation, we

can solve it analytically. In addition to these time-dependent solutions, we study static

solutions that would be interpreted as M2-branes stretched between two M5s or M5/anti-

M5-branes. Similar to the D3⊥D1 system [18, 21, 19], we find that there are two types of

solutions. One is a wormhole-like solution, the other is a cusp solution. Similar analysis

were performed for D5⊥D1 [22] and D7⊥D1 [23] systems.

The organization of this paper is as follows. In section 2, we briefly review the ABJM

model and its half-BPS solutions. The equation of motion is also determined. In section 3,

time-dependent oscillating fuzzy S3 solutions are analyzed both for massless and massive

cases. In section 4, non-BPS configurations representing multiple M2-branes suspended

between parallel M5/anti-M5 and M5/M5 are discussed. Section 5 is our conclusion and

discussion. Properties of the BPS matrices can be found in appendix A. In appendix B,

moving fuzzy funnels and domain wall solutions with constant velocity are briefly discussed.

In appendix C, a simple form of the time-dependent solution is presented.
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2. Equations of motion and BPS solutions

In this section, we briefly review (2+1) dimensional N = 6 Chern-Simons theory proposed

in [13]. This theory consists of U(N) × U(N) gauge fields with level k and −k coupled

to (anti) bi-fundamental matter fields. We basically employ the notation of [20] but with

different normalization of U(N) generators T a such that Tr(T aT b) = 1
2δab. The bosonic

part of the ABJM action is

S = Skin + SCS + Spot. (2.1)

Here each parts are given by

Skin =

∫

d3x Tr
[

−(DµZA)(DµZA)† − (DµWA)(DµWA)†
]

, (2.2)

SCS =
k

4π

∫

d3x Trǫµνλ

[

Aµ∂νAλ +
2i

3
AµAνAλ − Âµ∂νÂλ − 2i

3
ÂµÂνÂλ

]

, (2.3)

Spot = −4π2

k2

∫

d3x Tr
[

(ZAZ†
A + W †AWA)(ZBZ†

B − W †BWB)(ZCZ†
C − W †CWC)

+(Z†
AZA + WAW †A)(Z†

BZB − WBW †B)(Z†
CZC − WCW †C)

−2Z†
A(ZBZ†

B − W †BWB)ZA(Z†
CZC − WCW †C)

−2W †A(Z†
BZB − WBW †B)WA(ZCZ†

C − W †CWC)
]

+
16π2

k2

∫

d3x Tr
[

W †AZ†
BW †CWAZBWC − W †AZ†

BW †CWCZBWA

+Z†
AW †BZ†

CZAWBZC − Z†
AW †BZ†

CZCWBZA
]

. (2.4)

The world-volume metric is chosen such as ηµν = diag(−1, 1, 1). Here Aµ and Âµ are

U(N) × U(N) gauge fields, ZA,W †A(A = 1, 2) are bi-fundamental (N, N̄) representation

of the U(N)×U(N) gauge group, k is an integer specifying the level of the Chern-Simons

theory. The gauge covariant derivative is

DµZA ≡ ∂µZA + iAµZA − iZAÂµ,

DµWA ≡ ∂µWA − iWAAµ + iÂµWA, (2.5)

and the field strength for Aµ is defined by

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] , (2.6)

and similarly for Âµ. We normalized overall U(1) charges to be +1. This model exhibits

a manifest SU(2) × SU(2) × U(1)R global symmetry which is in fact combined with the

SU(2)R and enhanced to SU(4)R. For k > 2, this model has explicit N = 6 supersymmetry.

The supersymmetry transformation of the component fields can be found in [15, 25, 24].

This model is expected to describe low energy effective theory of N coincident M2-branes

in C4/Zk. The world-volume coordinates (t, x1, x2) are identified with the space-time

coordinates (X0,X1,X2).
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Once we drop the gauge fields and WA, the BPS equation for ZA = ZA(x2), which pre-

serves a half of the original supersymmetry can be derived by performing the Bogomol’nyi

completion [16]1 or supersymmetry transformation [15] as

∂2Z
A = −2π

k

(

ZBZ†
BZA − ZAZ†

BZB
)

. (2.7)

Let us consider an ansatz

ZA = f(x2)S
A, (2.8)

where SA are constant matrices satisfying the relation

SA = SBS†
BSA − SAS†

BSB . (2.9)

We call these SA “the BPS matrices”. The matrices were first found in [26] and the explicit

form are presented in the appendix A. The two complex scalar fields ZA (A = 1, 2) have the

physical meaning of the transverse displacement of M2-branes along four-directions, say,

(X3,X4,X7,X8) directions. If we assume real function f and using these BPS matrices,

the BPS equation (2.7) reduces to

∂2f(x2) = −2π

k
f3(x2). (2.10)

A solution to this equation is easily found to be

f(x2) =

√

k

4π
(x2 − x0)

− 1

2 , x2 > x0. (2.11)

Because of the noncommutative property of ZA, the solution exhibits a fuzzy configuration.

Indeed, this is just the fuzzy funnel solution with its cross-section fuzzy S3. This solution

represents an M5-brane located at x2 = x0 extending along (X1,X3,X4,X7,X8) and

sharing the X1 direction with N M2-branes.

On the other hand, to elaborate time-dependent or non-BPS solutions, we need to

study second derivative equation of motion. The equation of motion for ZA with WA =

Aµ = Âµ = 0 is obtained as

�ZA =
4π2

k2

{

3(ZBZ†
B)2ZA + 3ZA(Z†

BZB)2 − 2ZAZ†
B(ZCZ†

C)ZB

−2(ZBZ†
B)ZA(Z†

CZC) − 2ZB(Z†
CZC)Z†

BZA
}

, (2.12)

where � = ∂µ∂µ. Note that this equation is Lorentz invariant. We can easily show that the

BPS equation (2.7) is consistent with this equation of motion. Let us analyze a solution

of the equation of motion with specific ansatz. As in the case of the BPS configurations,

consider an ansatz

ZA = f(x)SA, f(x) ∈ C (2.13)

1In fact, the BPS equation presented here is coming from the D-term completion [16]. The F-term

condition in our ansatz provides a trivial solution only.

– 4 –



J
H
E
P
1
2
(
2
0
0
8
)
0
2
3

with the BPS matrices SA, then due to the property of the BPS matrices, the right hand

side of the equation of motion becomes proportional to SA (see appendix) and the equa-

tion (2.12) reduces to the equation for f(x),

�f(x) =
12π2

k2
f(x)|f(x)|4. (2.14)

On the other hand, it is possible to construct one parameter deformation of the ABJM

model preserving an SU(2) × SU(2) ×U(1)R global symmetry and N = 6 supersymmetry.

It is just the mass deformed ABJM model [24, 26]. The equation of motion for the mass

deformed ABJM model is

�ZA =
4π2

k2

{

3(ZBZ†
B)2ZA + 3ZA(Z†

BZB)2 − 2ZAZ†
B(ZCZ†

C)ZB

−2(ZBZ†
B)ZA(Z†

BZB) − 2ZB(Z†
CZC)Z†

BZA
}

−8πm

k

{

ZBZ†
BZA − ZAZ†

BZB
}

+ m2ZA, (2.15)

where m is the mass of ZA. Here, we have dropped the gauge fields and WA. Plugging the

ansatz (2.13) back into the equation (2.15), we find the equation for the massive case,

�f(x) =
12π2

k2
f |f |4(x) − 8πm

k
f |f |2(x) + m2f(x). (2.16)

As in the massless case, the BPS matrices are linearized on both sides of the equation (2.15).

On the other hand, the 1/2 BPS equation of the massive ABJM model is [16]

∂2Z
A = −2π

k

{

(ZBZ†
B)ZA − ZA(Z†

BZB)
}

+ mZA. (2.17)

This is consistent with the massive equation of motion (2.15) . If we assume that f(x2) is

a real function, the BPS solutions of the equation (2.16) are given by

f±(x2) =

√

km

2π

(

1 ± e−2mx2

)− 1

2 , (2.18)

where f+ is a domain wall interpolating a trivial vacuum and a non-trivial fuzzy S3 vacuum

while f− is a deformed fuzzy funnel [16]. The ansatz (2.13) preserves SU(2) symmetry.

Note that any scalar fields satisfying the equations (2.12), (2.15) should satisfy the

“Gauss’ law” constraints,

(∂µZA)Z†
A − ZA(∂µZA)† = 0,

(∂µZA)†ZA − Z†
A(∂µZA) = 0. (2.19)

These constraints are automatically satisfied for the ansatz (2.13) provided

f(x) = eiφg(x), g(x) ∈ R, (2.20)

with constant phase φ ∈ R.

A comment is in order. Because the equation of motions for massless and massive

cases are manifestly Lorentz invariant, we can construct Lorentz boosted solutions from

known static BPS solutions. A few examples of these boosted solutions are presented in

the appendix B.
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Figure 1: A numerical plot of the solution for the equation (3.1) with k = 1, f(t = 0) = f0 =

1, f ′(t = 0) = 0.

3. Oscillating fuzzy S3

In this section, we consider time evolutions of fuzzy S3 in the ABJM model by solving

the equation of motion with the ansatz of purely time-dependent function f(t). Several

works on time evolutions of fuzzy spheres have been studied in the context of D-brane

effective theories. In particular, collapsing fuzzy S2 [29, 27, 28] and S3, S5 [30] solutions

were analyzed by the Dirac-Born-Infeld (DBI) equation of motion in the fully non-linear

level. We will show that a similar collapsing fuzzy sphere exists in the massless ABJM

model. Moreover, in the massive ABJM model, there are variety of solutions depending on

the value of the mass parameter.

3.1 Massless case

Consider an ansatz ZA = f(t)SA with real f(t). The equation (2.10) reduces to

−∂2
t f(t) = 3αf5(t), (3.1)

where α = 4π2

k2 . This can be rewritten as

ḟ2(t) = −αf6(t) + c0, (3.2)

where c0 is an integration constant and the dot stands for the time derivative. Assuming

an initial condition ḟ(t = t0) = 0, f(t = t0) = f0 > 0, we have c0 = αf6
0 . The solution is

valid only in the region 0 < |f | < f0. The physical radius of the fuzzy S3 is

R2 =
2

N
Tr
[

X†
AXA

]

=
2

NT2
Tr
[

S†
ASA

]

f2(t) =
2(N − 1)

T2
f2(t). (3.3)

Here we have used the relation Tr[S†
ASA] = N(N − 1) and physical coordinate XA ≡

√

1
T2

ZA [16]. The constant T2 is the tension of an M2-brane. A numerical plot of the

solution to the equation (3.1) is illustrated in figure 1. This is an oscillating fuzzy sphere

and we call this type of fuzzy sphere “collapsing” fuzzy sphere since it collapses to zero

size then expands again. A similar analysis of collapsing fuzzy S2 from the viewpoint of

– 6 –
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the DBI equation of motion in D2-brane world-volume was carried out in [27] where the

time-dependent solution is described by Jacobi elliptic functions exhibiting a large-small

duality of the fuzzy sphere radius.

Let us evaluate the decay time of the fuzzy sphere by analytically solving the equa-

tion (3.2). This can be done by separating f > 0 and f < 0 cases. For f > 0 case, the

equation (3.2) is integrated to give

1√
α

∫ f

f0

df
√

f6
0 − f6

= ±
∫ t

t0

dt. (3.4)

The left hand side of the above equation is evaluated as

1

6f2
0

√
α

[

B

(

f6

f6
0

,
1

6
,
1

2

)

− B

(

1

6
,
1

2

)]

, f6/f6
0 ≤ 1. (3.5)

Here we have used the definition of (incomplete) beta function

B(a, b) =

∫ 1

0
dt ta−1(1 − t)b−1 =

∫ ∞

0
dt ta−1(t + 1)−a−b =

∫ ∞

1
dt t−a−b(t − 1)a−1,

B(z, a, b) =

∫ z

0
dt ta−1(1 − t)b−1 =

∫ z

1−z

0
dt ta−1(t + 1)−a−b =

∫ 1

1−z

1
dt ta−1(t − 1)−a−b,

0 < Re(z) < 1, a, b > 0. (3.6)

Thus the equation (3.4) is

1

6f2
0

√
α

B

(

1

6
,
1

2

){

I

(

f6

f6
0

,
1

6
,
1

2

)

− 1

}

= ±(t − t0). (3.7)

Here I(z, a, b) is the regularized beta function defined by

I(z, a, b) =
B(z, a, b)

B(a, b)
. (3.8)

From this expression, we find the following analytic solution in the region f ≥ 02

f(t) = f0

[

I−1

(

τ,
1

6
,
1

2

)]
1

6

, τ = ±12πf2
0

k

t − t0

B
(

1
6 , 1

2

) + 1, (3.9)

where I−1(z, a, b) is the inverse regularized beta function. The solution for f < 0 region

can be obtained by reversing the sign in front of f0 in the equation (3.9) and changing

t ↔ −t. The decay time T = td − t0, f(td) = 0 is evaluated as

T =
1

6f2
0

√
α

∣

∣

∣

∣

B

(

0,
1

6
,
1

2

)

− B

(

1

6
,
1

2

)
∣

∣

∣

∣

=
k

12πf2
0

Γ
(

1
6

)

Γ
(

1
2

)

Γ
(

2
3

) ,

Γ
(

1
6

)

Γ
(

1
2

)

Γ
(

2
3

) ∼ 7.28595. (3.10)

2The full global solution can be obtained by taking the massless limit of the solution (3.47).
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A conserved energy of this oscillating fuzzy S3 is also evaluated analytically as

E =

∫

d3xTr[S†
ASA]

(

(∂tf)2 +
4π2

k2
f6

)

=
4π2

k2
f6
0 N(N − 1)

∫

d3x (3.11)

For N = 1, the energy vanishes indicating the fact that this solution is purely due to the

non-abelian nature of multiple M2-branes.

3.2 Massive case

Once we introduce a mass term for ZA, the ansatz ZA = f(t)SA satisfies the equation

−∂2
t f(t) =

12π2

k2
f5(t) − 8πm

k
f3(t) + m2f(t), f(t) ∈ R. (3.12)

Assuming an initial condition ḟ(t0) = 0, f(t0) = f0, the equation (3.12) reduces to

ḟ2 = −α(f6 − f6
0 ) + β(f4 − f4

0 ) − γ(f2 − f2
0 ), (3.13)

where we have defined

α =
4π2

k2
, β =

4πm

k
, γ = m2. (3.14)

The equation of motion can be rewritten as

τ̇2 = −4ατ(τ − f2
0 )

[

τ2 +

(

f2
0 − β

α

)

τ +
1

α
(αf4

0 − βf2
0 + γ)

]

, (3.15)

where we have defined τ = f2. We first consider f > 0 region. In this case, the equa-

tion (3.15) becomes

∫ f2

f2

0

dτ
√

−τ(τ − f2
0 )
{

τ2 +
(

f2
0 − β

α

)

τ + 1
α(αf4

0 − βf2
0 + γ)

}

= ±2
√

α

∫ t

t0

dt. (3.16)

The integral on the left hand side of the equation (3.16) is separately evaluated for the

following two cases, (A) τ2 +
(

f2
0 − β

α

)

τ + 1
α

(

αf4
0 − βf2

0 + γ
)

= 0 has real solutions, (B)

τ2 +
(

f2
0 − β

α

)

τ + 1
α

(

αf4
0 − βf2

0 + γ
)

= 0 has no real solutions. For the case (A), f0 should

satisfy 0 < f2
0 ≤ 2β

3α while f2
0 > 2β

3α for the case (B). If f0 = 0, there is only a trivial solution

f = 0.

3.2.1 Case (A)

In this situation, the integrand on the left hand side of the equation (3.16) can be written

as the following form

1
√

−τ(τ − f2
0 )(τ − g1)(τ − g2)

, (3.17)

– 8 –
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Here, the constants g1, g2 are given by

g1 =
1

2

[

(

−f2
0 +

β

α

)

+ f0

√

−3f2
0 +

2β

α

]

, (3.18)

g2 =
1

2

[

(

−f2
0 +

β

α

)

− f0

√

−3f2
0 +

2β

α

]

. (3.19)

The existence of the real roots g1, g2 is guaranteed by the constraint

0 < f2
0 ≤ 2β

3α
. (3.20)

In this region of f2
0 , both g1 and g2 are positive semi-definite. The behavior of the solution is

different depending on the values of g1 and g2. In this region, there are following possibilities

according to the value of f2
0 ,

(i) g1 > g2 > f2
0 > 0,

(

0 < f2
0 <

1

6

β

α

)

,

(ii) g1 > g2 = f2
0 > 0,

(

f2
0 =

1

6

β

α

)

,

(iii) g1 > f2
0 > g2 > 0,

(

1

6

β

α
< f2

0 <
1

2

β

α

)

,

(iv) g1 = f2
0 > g2 > 0,

(

f2
0 =

1

2

β

α

)

,

(v) f2
0 > g1 > g2 > 0,

(

1

2

β

α
< f2

0 <
2

3

β

α

)

,

(vi) f2
0 > g1 = g2 > 0,

(

f2
0 =

2

3

β

α

)

.

Solutions for the cases (i)-(vi) are studied separately in below.

Case (i) g1 > g2 > f2

0
> 0. For the case (i), the integration is evaluated as

−
∫ f2

0

f2

dτ
√

−(τ − g1)(τ − g2)(τ − f2
0 )τ

= − 2
√

(g1 − f2
0 )g2

F

(

arcsin

√

g2

f2
0

f2
0 − f2

g2 − f2
, κ1

)

,

(3.21)

where

f2
0 > f2 > 0, κ1 =

√

g1 − g2

g1 − f2
0

f2
0

g2
. (3.22)

Here F (ϕ, κ) is an elliptic integral with modulus κ defined by

F (ϕ, κ) =

∫ ϕ

0

dθ
√

1 − κ2 sin2 θ
, F (arcsin(x), κ) = sn−1x. (3.23)
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Figure 2: An analytic plot of the solution (3.24). k = m = 1, f0 = 0.1, t0 = 0. Plus sign in ± is

chosen.

Here sn(x) is the Jacobi’s elliptic function. From the expression (3.21), we obtain

f2(t) = g2f
2
0

sn2
[

∓√
α
√

g2(g1 − f2
0 )(t − t0)

]

− 1

f2
0 sn2

[

∓√
α
√

g2(g1 − f2
0 )(t − t0)

]

− g2

. (3.24)

The solution is the positive root of the equation (3.24). For f < 0, the solution is given

by the square root of (3.24) with minus sign and replacement t ↔ −t. An analytic profile

of the solution can be found in figure 2. This solution represents a collapsing fuzzy sphere

with the decay time T given by

T =
1

√
α
√

g1 − f2
0g2

F
(π

2
, κ1

)

. (3.25)

Case (ii) g1 > g2 = f2

0
> 0, f2

0
= 1

6

β

α
. For the case (ii), the equation of motion (3.13)

is rewritten as

ḟ2 =
1

108α
(6αf2 − β)2(3αf2 − 2β). (3.26)

Because 3αf2 − 2β < 3g1 − 2β = 0 at f2
0 = 1

6
β
α , the fact that the right hand side of

the above equation should be positive semi-definite requires that the solution should be

f2 = f2
0 = 1

6
α
β . Although this is an extremum point of the potential, this point is a local

maximum and the configuration is unstable.

Case (iii) g1 > f2

0
> g2 > 0. In the case (iii), the integration is evaluated as

∫ f2

f2

0

dτ
√

−(τ − g1)(τ − f2
0 )(τ − g2)τ

=
2

√

(g1 − g2)f2
0

F

(

arcsin

√

g1 − g2

g1 − f2
0

f2 − f2
0

f2 − g2
, κ2

)

,

(3.27)

where

g1 > f2 > f2
0 , κ2 =

√

g1 − f2
0

g1 − g2

g2

f2
0

. (3.28)
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Figure 3: An analytic plot of the solution (3.29) with k = m = 1, f0 = 0.3, t0 = 0, g1 = 0.205,

g2 = 0.0233. The plus sign in ±√
α is chosen.

The solution is

f2(t) =
g2(g1 − f2

0 )sn2 [±√
αf0

√
g1 − g2(t − t0)] − f2

0 (g1 − g2)

(g1 − f2
0 )sn2 [±√

αf0
√

g1 − g2(t − t0)] − (g1 − g2)
. (3.29)

The solution for f < 0 region can be obtained as well as for the case (i). Note that when

the numerator in (3.29) goes to zero, the denominator also goes to zero and f2(t) remains

finite value. This means that the solution does not collapse into zero size as can be seen in

figure 3. f2 oscillates between g1 and f2
0 meaning oscillating fuzzy S3 with finite radius.

Case (iv) g1 = f2

0
> g2 > 0, f2

0
= 1

2

β

α
. In this case, the right hand side of the

equation (3.13) is positive semi-definite only at the point f2 = f2
0 = 1

2
β
α . This is just the

vacuum configuration found in [26].

Case (v) f2

0
> g1 > g2 > 0, 1

2

β

α
< f2

0
< 2

3

β

α
. In this case, the integration is evaluated

as

−
∫ f2

0

f2

dτ
√

−(τ − f2
0 )(τ − g1)(τ − g2)τ

= − 2
√

(f2
0 − g2)g1

F

(

arcsin

√

g1

f2
0 − g1

f2
0 − f2

f2
, κ3

)

,

(3.30)

where

f2
0 > f2 > g1, κ3 =

√

f2
0 − g1

f2
0 − g2

g2

g1
. (3.31)

The solution is

f2(t) =
g1f

2
0

(f2
0 − g1)sn2

[

∓√
α
√

(f2
0 − g2)g1(t − t0)

]

+ g1

. (3.32)

An analytic profile can be found in figure 4. Note that because the numerator in the right

hand side of the equation (3.32) is always positive, this solution does not collapse into zero

size but oscillates within non-zero values of the radius.
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Figure 4: An analytic plot of the solution (3.32) with k = m = 1, f0 = 0.43, t0 = 0, g1 = 0.128,

g2 = 0.00517. The plus sign in ±√
α is chosen.

Case (vi) f2

0
> g1 = g2 > 0, f2

0
= 2

3

β

α
. In this case g1 = g2 = 1

6
β
α = 1

4f2
0 . The

integration is
∫ f2

f2

0

dτ

|τ − g1|
√

−τ(τ − f2
0 )

. (3.33)

Consider τ > g1 case. Then the integration is evaluated as

1√
κ

log

∣

∣

∣

∣

∣

1

τ − g1

(

1

2
f2
0 (τ − g1) +

3

8
f4
0 − 2

√

3

16
f4
0

(

−τ(τ − f2
0 )
)

)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f2

f2

0

, (3.34)

where κ = 3
16f4

0 . From this expression, we have the following solution

f2(t) =
f2
0

4

(1 + exp [±2
√

ακ(t − t0)])
2

1 − exp [±2
√

ακ(t − t0)] + exp [±4
√

ακ(t − t0)]
, (t ≥ t0). (3.35)

This solution is neither oscillating nor collapsing but shrinking down to a finite radius at

t → ∞. Indeed, at large t, we have

lim
t→∞

f2(t) =
f2
0

4
. (3.36)

An analytic profile can be found in figure 5.

3.2.2 Case (B)

In this case, the integral on the left hand side in the equation (3.16) can be rewritten as

∫ f2

f2

0

dτ
√

ϕ(τ)
=

∫ (B−f2)/(A−f2)

(B−f2

0
)/(A−f2

0
)

A − B
√

|ϕ(A)|
dt

√

(t2 − µ2)(t2 + ν2)
, (3.37)

where we have defined

ϕ(x) = F (x)G(x),

F (x) = −x2 + f2
0x,

G(x) =
1

α

(

x2 +

(

f2
0 − β

α

)

x +
1

α

(

αf4
0 − βf2

0 + γ
)

)

, (3.38)
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Figure 5: An analytic profile for the solution (3.35) with k = m = 1, f0 =
√

2

3π
, t0 = 0.

and

A =
1

β − 2αf2
0

[

j(f2
0 ) −

√

h(f2
0 )

]

, (3.39)

B =
1

β − 2αf2
0

[

j(f2
0 ) +

√

h(f2
0 )

]

. (3.40)

The functions j(x), h(x) are given by

j(x) ≡ αx2 − βx + γ, (3.41)

h(x) ≡ 3α2x4 − 5αβx3 + 4αγx2 + 2β2x2 − 3βγx + γ2. (3.42)

µ2 = −F (B)

F (A)
> 0,

ν2 =
G(B)

G(A)
> 0. (3.43)

Note that because β2−4αγ = 0, j(x) is positive definite and due to the condition f2
0 > β

2α ,

we have β−2αf2
0 < 0. From these facts, we can see A > 0, B < 0 and G(A) > 0, G(B) >

0, F (B) < 0. Although, there are two possibilities

F (A) > 0, (0 < A < f2
0 ), (3.44)

F (A) < 0, (A > f2
0 ), (3.45)

we consider F (A) > 0 case, otherwise the integral becomes complex valued. The inte-

gral (3.37) can be rewritten by the following change of variable,

t2 = µ2(1 − u2). (3.46)

Then the integral (3.37) is

∫ λ

λ0

A − B
√

|ϕ(A)|
cdu

√

(1 − u2)(1 − κ2
4u

2)
= c

A − B
√

|ϕ(A)|
[

F (arcsin(λ), κ4) − F (arcsin(λ0), κ4)
]

.

(3.47)
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value of f2
0 Solution Remarks

f2
0 = 0 f2 = 0 Vacuum

0 < f2
0 < 1

6
β
α eq. (3.24) Collapsing fuzzy S3

f2
0 = 1

6
β
α f2 = 1

6
β
α unstable point

1
6 < f2

0 < 1
2

β
α eq. (3.29) Oscillating fuzzy S3 with finite radius

f2
0 = 1

2
β
α f2 = 1

2
β
α Vacuum

1
2

β
α < f2

0 < 2
3

β
α eq. (3.32) Oscillating fuzzy S3 with finite radius

f2
0 = 2

3
β
α eq. (3.35) Shrinking fuzzy S3

f2
0 > 2

3
β
α eq. (3.47) Collapsing fuzzy S3

Table 1: Solutions for the massive case

Here

κ2
4 =

µ2

µ2 + ν2
, c = ± 2µu

√

µ2 + ν2|µ||u|
, (3.48)

(

B − f2

A − f2

)2

= µ2(1 − λ2),

(

B − f2
0

A − f2
0

)2

= µ2(1 − λ2
0). (3.49)

Note that ± in the expression of c is determined by whether t is positive (+) or negative (−).

Finding the explicit form of the solution f(t) from the equation (3.47) is straightforward

but we do not present it here. However, it is obvious that this solution is an oscillating

fuzzy sphere which can be collapsed into zero size as we will see below. Summary of these

solutions is found in table 1.

Because the nature of equations of motion comes from the 6th-order polynomial func-

tion for the scalar potential, the above characteristics of the solutions is inherently under-

stood as the motion of a particle which obey classical equation of motion in the 6th-order

polynomial potential. Setting off a particle with zero-velocity from a certain point that is

given by f0, on the one dimensional potential curve, its trajectory shows the behavior of

the corresponding solution (figure 6). Since the potential blows up at infinity, it must be

bounded. If the initial point is within the region (a), namely |f0| <
√

β/2α, the particle

begins to oscillate around the origin as in the case (i), except for the origin f0 = 0. Then it

passes across the origin in its cycle, the radius of the fuzzy S3 collapses. In contrast, if the

initial point is within the region (b), the particle oscillates around one of the local minima

at f0 = ±
√

β/2α, and thus the radius never collapses in this case, that is responsible for

the case (iii) or (v). Within the region (c), the amplitude of the oscillating motion is large

enough to get over both local maxima at f0 = ±
√

β/6α, and the radius shrinks in the

cycle again, responsible for the case (B). The shrinking radius solution of the case (vi)

(f0 = ±
√

3β/2α) is rather particular. That is related to the climbing hill motion, starting

from the point of the slope at the same level as the local maxima, to the local maximum

– 14 –



J
H
E
P
1
2
(
2
0
0
8
)
0
2
3

Figure 6: The behavior of the equation of motion is able to be understood as the behavior of

particle obeying classical equation of motion with the 6th-order potential.

of the same side, that needs infinite time to reach the summit. A simple form of the

time-dependent solution which is valid for arbitrary values of f0 is shown in appendix C.

For both (A) and (B) cases, the energy is evaluated as

E =

∫

d3xTr

[

|∂tZ
A|2 +

4π2

k2

∣

∣

∣

∣

−km

2π
ZB + ZAZ†

AZB − ZBZ†
AZA

∣

∣

∣

∣

2
]

=

∫

d3xN(N − 1)

(

ḟ2 + m2f2 − 4πm

k
f4 +

4π2

k2
f6

)

= N(N − 1)

(

4π2

k2
f6
0 − 4πm

k
f4
0 + m2f2

0

)
∫

d3x. (3.50)

One can easily show that this expression is positive definite for all the value of f0 except

the critical points f0 = 0, ±
√

km
2π at where the solution is given by f = f0 = const.

4. Non-BPS solutions

In this section, we analyze purely spatial, static solutions of the ABJM model. These are

generally non-BPS solutions but have interesting physical meaning.

A similar analysis in D-brane systems gives a hint to our case. It is known that a BPS

solution in the D-brane world-volume describes D-branes of lower dimensions. Especially,

N monopole solution in D3-brane world-volume can be understood as N D-strings attached

to the D3-brane. In such D3⊥D1 configuration, the dual description by D-string world-

volume effective theory is also possible [21]. Multiple D-string world-volume effective theory

is described by the non-abelian DBI action [31] and generically a solution exhibits fuzzy

configurations due to its noncommutative matrix structure. The BPS solution of this D-

strings effective theory is a fuzzy funnel whose cross-section is fuzzy S2 and one divergent

point along the D-string world-volume direction is interpreted as the location of a D3-brane
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that expands into the transverse direction of the D-strings. In addition to this BPS solution

it is known that there are non-BPS double funnel solutions whose cross-section is fuzzy S2.

They have two divergent points within the finite segment along the D-string world-volume.

These divergent points are interpreted as the location of two separated parallel 3-branes.

According to how to choose the integration constant, there are two types of double funnel

solutions. One is the wormhole-like solution describing D3 and anti-D3 connected by N

D-stings [18]. The other is the cusp solution studied in [19] representing N D-strings

suspended by two D3-branes. For large-N , the fuzziness of the configurations is effectively

smoothed out and the energy and the R-R charge corresponding to the configurations

precisely agrees both from the D3 and D1 point of views.

Analogous configurations are expected to exist also in eleven dimensional M-theory.

Indeed, in the following, we demonstrate that such solutions actually exist in the

ABJM model.

4.1 M5/anti-M5 solution

Consider the ansatz ZA = f(x2)S
A with a real function f . The massless equation of motion

reduces to

∂2
2f(x2) = 3αf5(x2), α =

4π2

k2
. (4.1)

At fixed x2, the configuration is interpreted as a fuzzy S3. The physical radius of the fuzzy

S3 is

R2 =
2(N − 1)

T2
f2(x2). (4.2)

Similar to the D3⊥D1 system in which the wormhole-like solutions connecting a D3 and

an anti-D3 exist, there would be parallel M5-anti M5 solutions in the ABJM model. The

equation (4.1) can be rewritten as

f ′ = ±
√

αf6 + c1, (4.3)

where c1 is an integration constant. Let us consider c1 ≡ −αf6
0 , f0 > 0 case. In this case,

because (f ′)2 = αf6−αf6
0 > 0, the solution is valid only in the region f > f0. Considering

minus sign in (4.3), f is a monotonically decreasing function of x2. Remarkably, f ′ = 0 at

f = f0 that happens within a finite value of x2. The equation (4.3) can be integrated to

give

x2 = x∞ +
1√
α

∫ ∞

f

df
√

f6 − f6
0

. (4.4)

In terms of the physical radius, x2 can be rewritten as

x2 = x∞ +
2(N − 1)√

αT2

∫ ∞

R

dR
√

R6 − R6
0

, (R2
0 =

2(N − 1)

T2
f2
0 ). (4.5)

At large R, this solution is approximated by the BPS fuzzy funnel solution, namely, an M5-

brane at x2 = x∞. At R = R0 > 0, (x2 = x2(R0)), the fuzzy funnel ceases to decreasing
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Figure 7: A schematic picture of the solution (4.5), (4.6).

its radius. As in the case of Dp/anti-Dp [18], this solution can continue past this point by

introducing another part of the solution

x2 = x∞ + 2∆x2 −
2(N − 1)√

αT2

∫ ∞

R

dR
√

R6 − R6
0

, ∆x2 = x2(R0) − x∞. (4.6)

The solution (4.6) is smoothly connected to the solution (4.5) at R = R0. The solution (4.6)

is the solution of (4.3) for plus sign so that R increases from R0. For large R, the solu-

tion (4.6) is approximated by another 5-brane at x2 = x∞ + 2∆x2. As in the case of the

D3⊥D1, this another 5-brane can be interpreted as an anti M5-brane. This is because the

orientation of the brane smoothly becomes opposite. See figure 7 for a schematic picture.

The integral in the solution is evaluated as

∫ ∞

R

dR
√

R6 − R6
0

=
1

6R2
0

[

∫ ∞

1
dy y−

5

6 (y − 1)−
1

2 −
∫ R6/R6

0

1
dy y−

5

6 (y − 1)−
1

2

]

=
1

6R2
0

[

B

(

1

2
,
1

3

)

− B

(

R6 − R6
0

R6
,
1

2
,
1

3

)]

, (4.7)

where we have changed the integration variable from R to y = R−6
0 R6. Be careful that

there is no point x2 corresponding to R = 0. From this expression, we have

∆x2 = x2(R0) − x∞ = 2(N − 1)
k

2πT2

1

6R2
0

B

(

1

2
,
1

3

)

∝ R−2
0 . (4.8)

Note that this solution is not BPS but for R0 = 0 limit, one of the two 5-branes goes

to infinity and we recover the BPS fuzzy funnel solution which is nothing but an (anti)

M5-brane. For large separation of M5/anti-M5, ∆x2 → ∞, the throat shrinks to zero-size.

This is similar to fundamental strings between a D-brane and an anti-D-brane.

This fact can be confirmed from the M5-brane point of view. A scalar field X in a

single p-brane world-volume is governed by the Nambu-Goto action

Sp = Tp

∫

dp+1ξ
√

1 + ∂µX∂µX. (4.9)
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Here X describes fluctuation along transverse direction to the p-brane and Tp is a tension

of the p-brane. The static, spherically symmetric equation of motion of X is

∂

∂r

(

rp−1X ′

√

1 + (X ′)2

)

= 0, (4.10)

where r =
√

ξ2
1 + · · · ξ2

p is a radial coordinate in the p-brane world-volume and the prime

in the equation stands for the differentiation with respect to r. The equation (4.10) can be

integrated to give

X(r) =

∫ ∞

r
dr

rp−1
0

√

r2p−2 − r2p−2
0

. (4.11)

Here r0 is an integration constant. This precisely match with the solution (4.5) with p = 4.

Note that because the M5-brane shares the one-dimension with the M2-branes, p = 5 is

effectively reduced to p = 4.

The energy of the solution is evaluated as

E =
T 2

2

4π

N

N − 1

∫

dtdx1

(

2π2

k

)

dR
2R6 − R6

0
√

R6 − R6
0

. (4.12)

For large N and large R region, the energy is approximately given by

E = T5vol(M5), (4.13)

where T5 ≡ T 2

2

2π and vol(M5) ≡
∫

dx1
(

2π2

k

)

R3dR are the tension and the volume of an

M5-brane. Note that the factor k in the volume appears due to the orbifolding Zk. This

is another evidence that the 5-branes located at the divergent points can be interpreted as

an (anti) M5-brane. To clarify whether the brane we are considering is M5 or anti-M5, we

need to evaluate its charge associated with 3-form in the eleven-dimensional supergravity.

Indeed, for the D-string case, we can show that the configuration of the double funnel

becomes the source of the R-R 4-form potential and the opposite world-volume directions

correspond to different signs of the charge [21]. Unfortunately, in our case, we do not know

the general coupling of 3-form in the multiple M2-brane world-volume theory and in order

to clarify the issue more explicitly we need further study of this coupling to evaluate the

charge corresponding to this configuration. Currently, we are unable to determine this

charge and this issue is beyond the scope of this paper.

4.2 Cusp solution

Let us consider c1 ≡ αf6
0 , f0 > 0 case in the equation (4.3). In this case, the fuzzy funnel

collapses at finite x2 (the minus sign solution in (4.3)) where the fuzzy funnel is pinched

off. An analytic profile of the solution is plotted in figure 8.

As discussed in [21, 19] for D3⊥D1 case, there is no singularity at R = 0 and the

solution can pass through this point smoothly provided the negative radius has physical

meaning. Alternatively, once we want to keep the radius positive, the solution can be
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Figure 8: An analytic plot of x2(f) with k = f0 = 1. The solid and dashed lines correspond to

plus and minus signs respectively in the equation (4.3).

Figure 9: A schematic picture of the cusp solution.

extended by introducing the solution for plus sign in (4.3). This is a cusp solution which

would represent M2-branes connecting an M5-brane and another M5-brane. This is because

the orientation of the brane world-volume does not change. A typical profile of this solution

is illustrated in figure 9. This situation is analogous to the one discussed in [19] in the D3-

brane context. Especially, for R > 0 region, the integral can be evaluated as

∫ ∞

R

dR
√

R6 + R6
0

=
1

6R2
0

[

∫ ∞

0
dy y−

5

6 (y + 1)−1/2 −
∫ R6/R6

0

0
dy y−

5

6 (y + 1)−1/2

]

=
1

6R2
0

[

B

(

1

6
,
1

3

)

− B

(

R6

R6 + R6
0

,
1

6
,
1

3

)]

. (4.14)

Contrast to the M5/anti-M5 solution, there is a point x2 corresponding to R = 0, — a

shrinking point of fuzzy S3. The distance between two parallel M5-branes is given by

∆x2 = 2(N − 1)
k

2πT2

1

6R2
0

∣

∣

∣

∣

B

(

1

6
,
1

3

)

− B

(

1

2
,
1

6
,
1

3

)
∣

∣

∣

∣

∝ R−2
0 . (4.15)

A dual picture from the viewpoint of the M5-brane would be possible. As in the case

of the D3-brane analysis, turning on the self-dual gauge field in the M5-brane world-
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volume [32, 33] would play an important role to construct the cusp solution presented

here. Although there are two parallel M5-branes, this solution is not BPS. The BPS

configuration is recovered in the limit R0 → 0 where one of the M5-brane goes to infinity.

4.3 Non-BPS solutions in mass deformed ABJM model

Let us briefly discuss the static solution of the equation of motion in the mass deformed

ABJM model. With the ansatz ZA = f(x2)S
A, f ∈ R, the equation of motion (2.16) can

be rewritten as

f ′′ =
dV

df
, V (f) ≡ 2π2

k2
f2(f2 − v2)2, v2 ≡ km

2π
=

β

2α
. (4.16)

There is an integration constant c defined by

m2v2

2
c =

1

2
f ′2 − V (f). (4.17)

Note that for c = 0, this equation reduces to the BPS equation

f ′ = ±2π

k
f(f2 − v2), (4.18)

and the solutions are given by f± in (2.18). As in the case of the time-dependent solution,

it is convenient to rewrite the equation of motion with respect to τ ≡ f2

τ ′2 = 8f2[V (f) + c] =
4m2

v4
τ
[

τ(τ − v2)2 + cv6
]

, (4.19)

This equation can be simplified by using the following ansatz

τ(x) =
3cv2

3h(m(x − x0)) − 1
. (4.20)

With this ansatz, the equation (4.19) reduces to the equation for the function h

(h′)2 = 4h3 − g2h − g3, (4.21)

where the parameters g2 and g3 are given by

g2 ≡ 4

3
(6c + 1) , g3 ≡ −4

(

c2 +
2

3
c +

2

27

)

. (4.22)

From equation (4.21), we find that the function h is given by the Weierstrass’s elliptic

function ℘. Therefore, the static solution of the equation of motion is

τ = f2 =
3cv2

3℘(m(x − x0)) − 1
. (4.23)

For the values of the parameter c < 0 and c > 0, the solution has similar profiles as figure 7

and figure 9 respectively. By taking the limit c → 0 with adjusting the parameter x0

appropriately, we can reproduce the BPS solutions f± in (2.18).
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5. Conclusion and discussions

In this paper, we have investigated several classical solutions of the ABJM model. The

equation of motion for the scalar fields can be solved by the help of the BPS matri-

ces. Due to the noncommutative nature of the matrices, the solutions generically exhibit

fuzzy structures.

In the first part of the main text, we studied time evolutions of fuzzy spheres particu-

larly focusing on fuzzy S3s. We found analytic solutions both for the massless and massive

cases. For the massless case, there is an oscillating fuzzy sphere solution which collapses

into zero size then expands again. The decay time is analytically derived. For the massive

case, there are solutions having different behaviors according to the value of the mass and

the initial condition. Remarkably, if the mass has an appropriate value, there are solutions

that do not decay into zero size but keep its radius being positive. This is different from

the massless case where such solutions do not exist.

In the second half of the main body, we investigated purely spatial, static, generically

non-BPS solutions. Similar to the D3⊥D1 system, we found two kinds of solutions. One

is the wormhole-like solution with its cross-section fuzzy S3. This solution is given by

smoothly connecting two fuzzy funnels. The two fuzzy funnels expand into two M5-branes

with opposite world-volume direction. Therefore one of the M5-branes can be interpreted

as an anti M5-brane. The solution can be also analyzed from the viewpoint of dual M5-

brane world-volume picture. The other is the cusp solution connecting two 5-branes. In

this solution, the fuzzy S3 is pinched off at a point and then growing into the other 5-

brane. Because the 5-brane world-volume direction does not change, the two 5-branes are

interpreted as two M5-branes.

There are a few comments on the study performed in this paper. The solutions ex-

amined in this paper are solutions of the effective action at leading order in the derivative

expansion of a non-linear action. This corresponds to the leading order Yang-Mills part

in the expansion of the DBI action. Actually, based on the novel higgs mechanism first

proposed in [34], when a scalar field develops a VEV and taking the large VEV and large

k limit with fixed v/k, the ABJM model reduces to the three-dimensional N = 8 U(N)

super Yang-Mills action — the leading order of the effective action of N D2-branes in type

IIA string theory [13, 35]. In the discussion of D-brane world-volume effective action, such

a leading order solution (including the wormhole and cusp solutions) frequently gives a

solution in the full non-linear level and the solutions found in this paper would keep be-

ing solutions at the full non-linear M2-brane effective action. Some non-linear version of

multiple M2-brane effective theories were proposed in [36 – 38].

Another important point is to find M2-brane effective action in general supergravity

background. The ABJM model is interpreted as an multiple M2-brane effective action in

flat space-time C4/Zk, and couplings with the background supergravity field cannot be

described correctly in this model. It is important to find the correct coupling of these

supergravity fields in the multiple M2-branes.

In this paper, we analyzed the simplest class of the solutions, ZA 6= 0, WA = Aµ =

Âµ = 0. It would be interesting to investigate the effects of non-zero gauge fields like the

situation studied in [21] where (p, q)-strings attached to a D3-brane.
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A. BPS matrix

The BPS matrices SA (A = 1, 2) satisfy the following relations.

SA = SBS†
BSA − SAS†

BSB , (A.1)

S†
A = S†

ASBS†
B − S†

BSBS†
A. (A.2)

The explicit form of the matrices SA was first found in [26]. This is given by

(S†
1)mn =

√
m − 1δmn,

(S†
2)mn =

√
N − mδm+1,n, (A.3)

S1S†
1 = diag(0, 1, 2, . . . , N − 1) = S†

1S
1, (A.4)

S2S†
2 = diag(0, N − 1, N − 2, . . . , 1), (A.5)

S†
2S

2 = diag(N − 1, N − 2, . . . , 1, 0), (A.6)

SAS†
A = diag(0, N, · · · , N), S†

ASA = diag(N − 1, · · · , N − 1). (A.7)

From this expression, we have

TrSAS†
A = TrS†

ASA = N(N − 1). (A.8)

Let us see the linearization of the matrices SA in the right hand side of the massless

equation of motion (2.12). Assuming an ansatz ZA = f(x)SA, the matrix structure on the

right hand side of (2.12) is

3(SBS†
B)2SA + 3SA(S†

BSB)2 − 2SAS†
B(SCS†

C)SB (A.9)

−2(SCS†
C)SA(S†

BSB) − 2SB(S†
CSC)S†

BSA ≡ MA.

The BPS matrices satisfy the relation

(SBS†
B)2SA = (SBS†

B)SA + (SBS†
B)SA(S†

CSC), (A.10)

SA(S†
BSB)2 = −SA(S†

BSB) + (SBS†
B)SA(S†

CSC). (A.11)

Therefore

3(SBS†
B)2SA + 3SA(S†

BSB)2 = 3SA + 6(SBS†
B)SA(S†

CSC). (A.12)
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Then

MA = 3SA + 4(SBS†
B)SA(S†

CSC) − 2SAS†
B(SCS†SC )SB − 2SB(S†

CSC)S†
BSA. (A.13)

Using the relation

S†
BSB = S†

B(SCS†
C)SB − (S†

CSC)2, (A.14)

SBS†
B = (SCS†

C)2 − SB(S†
CSC)S†

B , (A.15)

we have

4(SBS†
B)SA(S†

CSC) − 2SAS†
B(SCS†SC )SB − 2SB(S†

CS C)S†
BSA

= 4(SBS†
B)SA(S†

CSC) − 2SA(S†
BSB) + 2(SBS†

B)SA + 2SA(S†
BSB)

−2(SBS†
B)SA(S†

CSC) − 2(SBS†
B)SA − 2(SBS†

B)SA(S†
CSC) = 0. (A.16)

Finally, we find

MA = 3SA. (A.17)

For the massive case, there is only an additional term coming from the second term in the

right hand side in (2.15). This can be trivially linearized by using the relation (2.9).

B. Moving fuzzy funnels and a domain wall

As discussed in section 1, the equation of motion is world-volume Lorentz invariant. There-

fore one way to obtain a non-trivial time-dependent solution is Lorentz boosting of known

purely spatial solutions. In this appendix, we show that moving fuzzy funnels and do-

main wall solutions with constant velocity are obtained by boosting known BPS solutions.

Consider an ansatz

ZA(x) = f(x)SA, f ∈ R, (B.1)

then the equation of motion for massless case (2.12) reduces to

(−∂2
t + ∂2

1 + ∂2
2)f(x)SA =

12π2

k2
f5(x)SA. (B.2)

The BPS solution

f(x) = f(x2) =

√

k

4π
(x2 + x0)

− 1

2 (B.3)

satisfies the equation (2.12). In addition to the static solution, we can explicitly show the

following solution satisfies the equation,

f(x2, t) =

√

k

4π

(

γx2 ±
√

γ2 − 1t
)− 1

2

. (B.4)
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Here 0 < γ ≤ 1 is a real parameter. This is just the Lorentz boost of the BPS solu-

tion (B.3) with

x′2 = γ(x2 − vt), γ =
1

√

1 − v2/c2
. (B.5)

This solution would represent moving an M5-brane with constant velocity v = ±c

√
γ2−1
γ .

c is the speed of light. Let us check this fact. The cross-section of the solution (B.4) at

fixed x2, t is a fuzzy S3 with radius

R2 =
k(N − 1)

2πT2

1

αx2 ±
√

α2 − 1t
. (B.6)

Then the energy of the configuration (B.4) is evaluated as

E =

∫

dtdx1dx2Tr

[

|∂tZ
A|2 + |∂2Z

A|2 +
4π2

k2
|ZAZ†

AZB − ZBZ†
AZA|2

]

= γ
T 2

2

2π

N

N − 1

∫

dtdx1

(

2π2

k

)

R3dR. (B.7)

At large-N , this reduces to

E =
Mc2

√

1 − v2/c2
(N → ∞), (B.8)

where

M = T5vol(M5) (B.9)

is the mass of an M5-brane. This energy precisely match with the one of an M5-brane

moving with velocity v < c. Similar to the massless case, we obtain moving deformed fuzzy

funnel and domain wall by Lorentz boosting known massive BPS solutions

f±(x2, t) =

√

km

2π

(

1 ± e−2mx′

2

)− 1

2

, (B.10)

where x′ is given by the equation (B.5).

C. Time-dependent solution in a simple form

In this section, we derive a simple form of the time-dependent solution which is valid for

arbitrary values of f0. The equation of motion (3.12) can be rewritten as

f̈ = −dV

df
, V (f) ≡ 2π2

k2
f2(f2 − v2)2, v2 ≡ km

2π
=

β

2α
. (C.1)

This is nothing but the equation of motion for the particle in the potential V (f). Therefore

we can define the conserved energy as

E ≡ 1

2
ḟ2 + V (f). (C.2)
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If we assume that f(t0) = f0 and ḟ(t0) = 0, the energy is given by

E = V (f0). (C.3)

The equation (3.15) (τ̇2 = −8f2[V (f) − V (f0)]) can be cast into a simple form by using

the following ansatz

τ(t) = f2
0

(

1 − a

b + h(m(t − t0))

)

, a ≡ (f2
0 − v2)(3f2

0 − v2)

v4
, b ≡ 1

3
+

2f2
0 (f2

0 − v2)

v4
.

(C.4)

Then, the equation for the function h is given by

ḣ2 = 4h3 − g2h − g3, (C.5)

where the parameters g2 and g3 are given by

g2 ≡ −4

3
(2c − 1) , g3 ≡ 4

27

(

3c2 − 6c + 2
)

, c ≡ 3f2
0 (f2

0 − v2)2

v6
. (C.6)

The solution to the equation (C.5) is nothing but the equation for the Weierstrass’s elliptic

function ℘. Therefore, the time-dependent solution for τ is given by

τ = f2 = f2
0

(

1 − a

b + ℘(m(t − t0))

)

. (C.7)

This solution is valid for arbitrary value of f0.
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